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Abstract

We give a review of a series of techniques and results on the design
of subexponential parameterized algorithms for graph problems. The
design of such algorithms usually consists of two main steps: first find
a branch- (or tree-) decomposition of the input graph whose width is
bounded by a sublinear function of the parameter and, second, use this
decomposition to solve the problem in time that is single exponential
to this bound. The main tool for the first step is Bidimensionality
Theory. Here we present the potential, but also the boundaries, of this
theory. For the second step, we describe recent techniques, associating
the analysis of sub-exponential algorithms to combinatorial bounds

related to Catalan numbers. As a result, we have 2O(
√

k) · nO(1) time
algorithms for a wide variety of parameterized problems on graphs,
where n is the size of the graph and k is the parameter.

1 Introduction

The theory of fixed-parameter algorithms and parameterized complexity has
been thoroughly developed during the last two decades; see e.g. the books
of Downey and Fellows [31], Flum and Grohe [35], and Niedermeier [47].
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Usually, parameterizing a problem on graphs is to consider its input as a
pair consisting of the graph G itself and a parameter k. Typical examples
of such parameters are the size of a vertex cover, the length of a path or
the size of a dominating set (the formal definitions of these parameters are
detailed in Section 2). Roughly speaking, a parameterized problem on an
n-vertex graph with parameter k is fixed parameter tractable if there is an
algorithm solving the problem in f(k) · nO(1) steps for some function f that
depends only on the parameter.

While there is a strong evidence that most fixed-parameter algorithms
cannot have running times 2o(k) ·nO(1) (see [13, 35, 43]), for planar graphs it
is possible to design subexponential parameterized algorithms with running

times of the type 2O(
√

k) · nO(1) (see [13, 15] for further lower bounds on
planar graphs). For example, Planar k-Vertex Cover can be solved

in O(23.57
√

k) + O(n) steps, Planar k-Dominating Set can be solved in

O(211.98·
√

k)+O(n3) steps, and Planar k-Longest Path can be solved in

O(210.52·
√

k · n) + O(n3) steps [27]. Similar algorithms are now known for a
wide class of parameterized problems, not only for planar graphs, but also
for several other sparse graph classes.

The first paper in this area is due to Alber et al. [2] and it appeared
in 2000. Since that work, the study of fast subexponential algorithms at-
tracted a lot of attention. In fact, it not only offered a good ground for the
development of parameterized algorithms, but it also prompted combinato-
rial results, of independent interest, on the structure of several parameters
in sparse graph classes such as planar graphs [1, 3, 5, 14, 19, 34, 37, 42, 44]
bounded genus graphs [20, 36], graphs excluding some single-crossing graph
as a minor [26], apex-minor-free graphs [18] and H-minor-free graphs [17,
20, 21].

We here present general approaches for obtaining subexponential pa-
rameterized algorithms (Section 2) and we reveal their relation with com-
binatorial results related to the Graph Minors project of Robertson and
Seymour. All these algorithms exploit the structure of graph classes that
exclude some graph as a minor. This was used to develop techniques such
as Bidimensionality Theory (Section 3) and the use of Catalan numbers for
better bounding the steps of dynamic programming when applied to minor
closed graph classes (Sections 4 and 5).

2 Preliminaries

We consider graphs that do not have loops or multiple edges. Given a graph
G, we denote its vertex set by V (G) and its edge set by E(G) and we set
n = |V (G)|. Also for an edge set F ⊆ E(G) we definefe the subgraph of
G induced by F as the graph whose vertices are the endpoints of the edges
in F and whose edges are the edges in F . Given an edge e = {x, y} of a
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graph G, the graph G/e is obtained from G by contracting the edge e, i.e.
the endpoints x and y are replaced by a new vertex vxy which is adjacent
to the old neighbors of x and y (except from x and y). A graph H obtained
by a sequence of edge-contractions is said to be a contraction of G. We say
that H is a minor of G if H is a subgraph of a contraction of G. We use
the notation H � G (resp. H �c G) when H is a minor (a contraction)
of G. It is well known that H � G or H �c G implies bw(H) ≤ bw(G)
(for example, in Figure 1, it holds that G3 � G2 � G1, G2 �c G1 but also
G3 6�c G2 and G3 6�c G1).

removalscontraction

x

y
vxy

G1 G2 G3
edge edge

Figure 1: An example of edge contraction and removals.

Given two graphs G and H, the problem of checking whether H � G,
when both G and H are part of the input is NP-complete (asking for a
hamiltonian cycle is equivalent to asking whether G contains as a minor
a cycle with n vertices. Similarly, the problem of checking whether H �c

G, is NP-complete ([39], problem [GT51]). In the case where H is not a
part of the input, checking whether H � G is solvable in O(n3) where the
constants hidden in the “O”-notation heavily depend on the fixed graph H
(see Robertson and Seymour [48, 53]). Things are less clear for the problem
of asking whether H �c G when H is not part of the input: there are choices
of H where the problem remains NP-complete (see Levin et al. [45]).

We say that a graph G is H-minor-free when it does not contain H as
a minor. We also say that a graph class G is H-minor-free (or, excludes H
as a minor) when all its members are H-minor-free. E.g., by Kuratowski’s
theorem, the class of planar graphs is a K5-minor-free graph class and also
a K3,3-minor-free graph class.

Let G be a graph on n vertices. A branch decomposition (T, µ) of a
graph G consists of an unrooted ternary tree T (i.e. all internal vertices are
of degree three) and a bijection µ : L → E(G) from the set L of leaves of T
to the edge set of G. We define for every edge e of T the middle set mid(e) ⊆
V (G) as follows: Let T1 and T2 be the two connected components of T \{e}.
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Figure 2: A graph and its branch decomposition of width 3 and the middle
set for the edge e.

Then let Gi be the graph induced by the edge set {µ(f) : f ∈ L∩V (Ti)} for
i ∈ {1, 2}. The middle set is the intersection of the vertex sets of G1 and
G2, i.e., mid(e) := V (G1) ∩ V (G2). The width of (T, µ) is the maximum
order of the middle sets over all edges of T , i.e.,

w(T, µ) := max{|mid(e)| : e ∈ T}.

An optimal branch decomposition of G is defined by the tree T and the
bijection µ which give the minimum width, the branchwidth, denoted by
bw(G). In Figure 2, one can find an example of a branch decomposition of
a graph.

Checking whether the branchwidth of a graph is at most k is NP-complete
when k is part of the input (see Seymour and Thomas [56]) while, if k is
not part of the input, the problem can be solved in O(n) steps due to
Bodlaender and Thilikos [12, 57]. Also, the same problem is solvable in
polynomial time when the input graph is planar [41, 56]. Finally, by Feige
et al. [32], branchwidth is O(1)-approximable for any graph class excluding
some fixed graph as a minor and admits an OPT

√
log OPT -approximation

for general graphs.

A parameter P is any function mapping graphs to nonnegative integers.
The parameterized problem associated with P asks, for some fixed k, whether
P (G) = k for a given graph G. We say that a parameter P is closed under
taking of minors (contractions) (or, briefly, minor (contraction) closed) if
for every graph H, H � G (H �c G) implies that P (H) ≤ P (G).

The following three sample problems capture the most important prop-
erties of the investigated parameterized problems.
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k-Vertex Cover. A vertex cover C of a graph is a set of vertices such that
every edge of G has at least one endpoint in C (for example, the minimum
size of a vertex cover in the graph G1 in Figure 1 is five). The k-Vertex

Cover problem is to decide, given a graph G and a positive integer k,
whether G has a vertex cover of size k. Let us note that vertex cover is
closed under taking minors, i.e. if a graph G has a vertex cover of size k,
then each of its minors has a vertex cover of size at most k.

k-Dominating set. A dominating set D of a graph G is a set of vertices
such that every vertex outside D is adjacent to a vertex of D (for example,
the minimum size of a dominating set in the graph G1 in Figure 1 is three).
The k-Dominating Set problem is to decide, given a graph G and a positive
integer k, whether G has a dominating set of size k. Let us note that the
dominating set is not closed under taking minors (for example, graph G1 in
Figure 1 contains a matching of five edges that induce a graph where any
dominating set has size at least 5). However, it is closed under contraction
of edges.

Given a branch decomposition of G of width ≤ ℓ both problems k-
Vertex Cover and k-Dominating Set can be solved in time 2O(ℓ)nO(1)

(see [1, 6, 8, 27, 37]).

k-Longest path. The k-Longest Path problem is to decide, given a
graph G and a positive integer k, whether G contains a path of length k (for
example the longest path in the graph G1 in Figure 1 is of length eight). The
complement of this problem (asking whether G does not contain a path of
length k) is closed under taking minors. The best known algorithm solving
this problem on a graph of branchwidth ≤ ℓ runs in time 2O(ℓ log ℓ)nO(1) (this
algorithm is based on standard dynamic programming techniques for graphs
of bounded treewidth or branchwidth, see e.g. Bodlaender [9]).

The main idea behind the majority of subexponential parameterized
graph algorithms [1, 26, 36, 37, 42, 44] on graph classes G is that a param-
eter P satisfies the following two conditions for some constants α and β:

(A) For every graph G ∈ G, bw(G) ≤ α ·
√

P (G) + O(1)

(B) For every graph G ∈ G and given a branch decomposition (T, µ) of G,
the value of P (G) can be computed in 2β·w(T,µ)nO(1) steps.

Conditions (A) and (B) are essential for Bidimensionality Theory due to
the following generic result.

Theorem 1. Let P be a parameter and let G be a class of graphs such that
(A) and (B) hold for some constants α and β. Then, given a branch decom-
position (T, µ) where w(T, µ) ≤ λ·bw(G) for a constant λ, the parameterized

problem associated with P can be solved in 2O(
√

k)nO(1) steps.
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Proof. Given a branch decomposition (T, µ) as above, one can solve the
parameterized problem associated with P as follows. If w(T, µ) > λ ·α ·

√
k,

then the answer to the associated parameterized problem with parameter k
is “NO” if it is a minimization and “YES” if it is a maximization problem.

Else, by (B), P (G) can be computed in 2λ·α·β·
√

knO(1) steps.

To apply Theorem 1, we need an algorithm that computes, in polynomial
time t(n), a branch decomposition (T, µ) of any n-vertex graph G ∈ G such
that w(T, µ) ≤ λ·bw(G)+O(1). This is possible for planar graphs due to the
results of Seymour and Thomas in [56] where an algorithm is provided for
computing an optimal branch decomposition of any planar graph in O(n4)
steps (this algorithm has been improved later to an O(n3) step algorithm by
Gu and Tamaki [41]). We stress that the algorithm in [56] is not involved,
however the proof of its correctness is based on a min-max characterization
of branchwidth emerging from the Graph Minors series of Robertson and
Seymour (see [49, 50]). We conclude that t(n) = nO(1) and λ = 1 for planar
graphs. For H-minor-free graphs (and thus, for all graph classes considered
here), t(n) = f(|H|) · nO(1) and λ ≤ f(|H|) for some function f depending
only on the size of H (see [25, 29, 32]).

In this survey we discuss how

• to obtain a general scheme of proving bounds required by (A) and to
extend parameterized algorithms to more general classes of graphs like
graphs of bounded genus and graphs excluding a minor (Section 3);

• to improve the running times of such algorithms (Section 4), and

• to prove that the running time of many dynamic programming algo-
rithms on planar graphs (and more general classes as well) satisfies
(B) (Section 5).

3 Property (A) and bidimensionality

In this section we show how to obtain subexponential parameterized algo-
rithms in the case when condition (B) holds for general graphs. The main
tool for this is Bidimensionality Theory developed in [18, 20–22, 24]. For a
survey on Bidimensionality Theory see Demaine and Hajiaghayi [17].

Planar graphs. While the results of this subsection can be extended to
wider graph classes, we start from planar graphs, where the general ideas are
easier to explain. The following theorem is the main ingredient for proving
condition (A).

Theorem 2 ([55]). Let ℓ ≥ 1 be an integer. Every planar graph of branch-
width ≥ ℓ contains an (⌈ℓ/4⌉ × ⌈ℓ/4⌉)-grid as a minor.
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The proof of Theorem 2 is based on the min-max theorem for branch-
width from Robertson and Seymour [49]. A simpler algorithmic proof of the
same result (but with slightly worse constants when translated for branch-
width) can be found in Grigoriev [40]). Let us demonstrate the usefulness
of Theorem 2 with the following examples.

We start with Planar k-Vertex Cover. Let G be a planar graph of
branchwidth ≥ ℓ. Observe that given a (r × r)-grid H, the size of a vertex
cover in H is at least ⌊r/2⌋ ·r (because of the existence of a matching of size
⌊r/2⌋ · r in H). By Theorem 2, we have that G contains an (⌈ℓ/4⌉ × ⌈ℓ/4⌉)-
grid as a minor. The size of any vertex cover of this grid is at least ℓ2/32.
As such a grid is a minor of G, and vertex cover is closed under minors, we
conclude that G has a vertex cover of size at least ℓ2/32. This implies that if
a planar graph has a vertex cover of size ≤ k, then its branchwidth is upper
bounded by

√
32 ·

√
k. Therefore, property (A) holds for α = 4

√
2.

For the Planar k-Dominating Set problem, the arguments used above
to prove (A) for Planar k-Vertex Cover do not work. Since the problem
is not minor-closed, we cannot use Theorem 2 as above. However, since the
parameter is closed under edge contractions, we can use a partially triangu-
lated (r×r)-grid which is any planar graph obtained from the (r×r)-grid by
adding some edges (see Figure 3). For every partially triangulated (r × r)-

grid H, the size of a dominating set in H is at least (r−2)2

9 (every “inner”
vertex of H has a closed neighborhood of at most 9 vertices). Theorem 2
implies that a planar graph G of branchwidth ≥ ℓ can be contracted to
a partially triangulated (⌈ℓ/4⌉ × ⌈ℓ/4⌉)-grid which yields that Planar k-
Dominating Set also satisfies (A) for α = 12.

These two examples induce the following idea: if the graph parameter
is closed under taking minors or contractions, the only thing needed for the
proof of (A) is to understand how this parameter behaves on a (partially
triangulated) grid. This brings us to the following definition.

Definition 3 ([20]). A parameter P is minor bidimensional with density δ
if

1. P is closed under taking of minors, and

2. for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2).

A parameter P is called contraction bidimensional with density δ if

1. P is closed under contractions,

2. for any partially triangulated (r×r)-grid R, P (R) = (δRr)2+o((δRr)2),
and

3. δ is the smallest δR among all paritally triangulated (r × r)-grids.
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Figure 3: A partial triangulation of a (12 × 12)-grid.

In either case, P is called bidimensional. The density δ of P is the minimum
of the two possible densities (when both definitions are applicable), 0 < δ ≤ 1.

Intuitively, a parameter is bidimensional if its value depends on the
“area” of a grid and not on its “height”.

Many parameters are bidimensional. Some of them, like the number of
vertices or the number of edges, are not so much interesting from the algo-
rithmic point of view. Of course the already mentioned parameter vertex
cover (dominating set) is minor (contraction) bidimensional (with densities
1/
√

2 for vertex cover and 1/9 for dominating set). Other examples of bidi-
mensional parameters are feedback vertex set with density δ ∈ [1/2, 1/

√
2],

minimum maximal matching with density δ ∈ [1/
√

8, 1/
√

2] and longest path
with density 1.

By Theorem 2, we have the following.

Lemma 4. If P is a bidimensional parameter with density δ then P satisfies
property (A) for α = 4/δ, on planar graphs.

By Lemma 4, Theorem 1 holds for every bidimensional parameter satis-
fying (B). Also, Theorem 1 can be applied not only to bidimensional param-
eters but to parameters that are bounded by bidimensional parameters. For
example, the clique-transversal number of a graph G is the minimum number
of vertices intersecting every maximal clique of G. This parameter is not
contraction-closed because an edge contraction may create a new maximal
clique and cause the clique-transversal number to increase (for example, in
Figure 1, the clique transversal number of graph G1 is three, while the clique
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transversal number of the graph G2 is four). On the other hand, it is easy
to see that this graph parameter always exceeds the size of any minimum
dominating set which yields (A) for this parameter.

Non-planar extensions and limitations. One of the natural approaches
of extending Lemma 4 from planar graphs to more general classes of graphs
is via a generalization of Theorem 2. To do this we have to treat separately
minor closed and contraction closed parameters.

For graphs embedded in surfaces, it is convenient to work with Euler
genus. The Euler genus of a nonorientable surface Σ is equal to the nonori-
entable genus g̃(Σ) (or the crosscap number). The Euler genus of an ori-
entable surface Σ is 2g(Σ), where g(Σ) is the orientable genus of Σ. We
refer to the book of Mohar and Thomassen [46] for information on graphs
embeddings.

The following extension of Theorem 2 holds for bounded genus graphs:

Theorem 5 ([20]). If G is a graph of Euler genus at most γ with branch-
width more than r, then G contains a (⌈r/4(γ + 1)⌉ × ⌈r/4(γ + 1)⌉)-grid as
a minor.

Figure 4: A orientable surface of genus one (torus) and a toroidal grid
embedded in it. The bold line is the visible part of a non-contractible noose.

The proof of Theorem 5, is strongly based on the notion of represen-
tativity of a graph embedding defined by Robertson and Seymour in [51]
and studied in [52]. Let G be a planar graph embedded in a surface S. An
O-arc is a subset of S homeomorphic to a circle. An O-arc in S is called
a noose of the embedding of G if it meets G only in vertices. The length
of a noose O is the number of vertices of G it meets. The representativity
of a graph embedded in a surface is the minimum number of vertices in a
non-contractible noose. (Some authors also use the name face-width for this
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parameter.) The book of Mohar and Thomassen [46] contains a chapter de-
voted to this parameter. According to Demaine et al. [20], any embedding
of representativity at least 4r contains as a minor an (r × r)-grid. If the
representativity is at most 4r, then there is a noose meeting few vertices
along which we can “split” the graph to one that is embeddible to a surface
of lower genus where the same arguments are repeated recursively.

Working analogously to the planar case, Theorem 5 implies the following.

Figure 5: A (12, 9)-gridoid.

Lemma 6. Let P be a minor bidimensional parameter with density δ. Then
for any graph G of Euler genus at most γ, property (A) holds for α =
4(γ + 1)/δ.

The next step is to consider graphs excluding a fixed graph H as a minor.
The proof extends Theorem 5 by making (nontrivial) use of the structural
characterization of H-minor-free graphs by Robertson and Seymour in [54].
(We discuss this characterization in Section 5.)

Theorem 7 ([21]). If G is an H-minor-free graph with branchwidth more
than r, then G has the (Ω(r)×Ω(r))-grid as a minor (the hidden constants
in the Ω notation depend only on the size of H).

As before, Theorem 5 implies property (A) for all minor bidimensional
parameters for some α depending only on the excluded minor H.

For contraction-closed parameters, the landscape is different. In fact,
each possible extension of Lemma 6, requires a stronger version of bidimen-
sionality. For this, we can use the notion of a (r, q)-gridoid that is obtained
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from a partially triangulated (r×r)-grid by adding at most q edges, see Fig-
ure 5. (Note that every (r, q)-gridoid has genus ≤ q.) The following extends
Theorem 2 for graphs of bounded genus.

Theorem 8 ([20]). If a graph G of Euler genus at most γ excludes all (k −
12γ, γ)-gridoids as contractions, for some k ≥ 12γ, then G has branchwidth
at most 4k(γ + 1).

A parameter is genus-contraction bidimensional if a) it is contraction
closed and b) its value on every (r,O(1))-gridoid is Ω(r2) (here the hid-
den constants in the “O” and the “Ω” notations depend only on the Euler
genus). Then Theorem 8 implies property (A) for all genus-contraction
bidimensional parameters for some constant that depends only on the Euler
genus.

Figure 6: An apex graph.

An apex graph is a graph obtained from a planar graph G by adding a
new vertex vnew and making it adjacent to some vertices of G (see Figure
6).

A graph class is apex-minor-free if it does not contain a graph with some
fixed apex graph as a minor. An (r, s)-augmented grid is an (r×r)-grid with
some additional edges such that each vertex is attached to at most s vertices
that in the original grid had degree 4. (An example of a (12, 8)-augmented
grid is given in Figure 7. The black vertex has 8 neighbors that have degree
4 in the underlying (12 × 12)-grid.) We say that a contraction closed pa-
rameter P is apex-contraction bidimensional if a) it is closed under taking
of contractions and b) its value on every (r,O(1))-augmented grid is Ω(r2)
(here the hidden constants in the “O” and the “Ω” notations depend only
on the excluded apex graph). As it was shown by Demaine et al. [18],
every apex-minor free graph with treewidth at least k can be contracted
to a (f(k)), O(1))-augmented. Because, f(k) = Ω(k) (due to the results
of Demaine and Hajiaghayi [21]), every apex-contraction bidimensional pa-
rameter satisfies property (A) for some constant that depends only on the
excluded apex graph.

A natural question appears: until what point property (A) can be sat-
isfied for contraction-closed parameters (assuming a suitable concept of
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Figure 7: A (12, 8)-augmented grid.

bidimensionality)? As it was observed by Demaine et al. [18], for some
contraction-closed parameters, like dominating set, the branchwidth of an
apex graph cannot be bounded by any function of their value: just take the
graph G obtained by an (n × n)-grid after connecting all its vertices with
a new vertex. Its branchwidth is Ω(n), while the new vertex dominates all
other vertices in G. Consequently, apex-free graph classes draw a natural
combinatorial limit on the the above framework of obtaining subexponential
parameterized algorithms for contraction-closed parameters. (On the other
side, this is not the case for minor-closed parameters as it is indicated by
Theorem 7, see Figure 8.) However, it is still possible to cross the frontier
of apex-minor-free graphs for the dominating set problem and some of its
variants where subexponential parameterized algorithms exist, even for H-
minor-free graphs, as it is shown in [20]. These algorithms are based on a
combination of dynamic programming and the structural characterization
of H-minor-free graphs from Robertson and Seymour [54]. For recent and
more general results in this direction, see Demaine et al. [23].

4 Further optimizations

In this section, we present several techniques for accelerating the algorithms
emerging by the framework of Theorem 1.

Making algorithms faster. While proving properties (A) and (B), it
is natural to ask for the best possible constants α and β, as this directly
implies an exponential speed-up of the corresponding algorithms. While,
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Figure 8: The territories of the applicability of Bidimensionality Theory.

Bidimensionality Theory provides some general estimation of α, in some
cases, deep understanding of the parameter behavior can lead to much better
constants in (A). For example, it holds that for Planar k-Vertex Cover,
α ≤ 3 (see Fomin and Thilikos [38]) and for Planar k-Dominating Set,
α ≤ 6.364 (see Fomin and Thilikos [37]). (Both bounds are based on the
fact that planar graphs with n vertices have branchwidth at most

√
4.5

√
n,

see [38].) Similar results hold also for bounded genus graphs [36].
On the other hand, there are several ways to obtain faster dynamic

programming algorithms and to obtain better bounds for β in (B). Adapting
the treewidth techniques (see Arnborg and Proskurowski [6], and Bodlaender
[11]) on branch decompositions, a typical approach computing an optimal
solution to a problem is as follows:

• In a given branch decomposition (T, µ) of a graph G we select a root
r by picking (arbitrarily) one of the vertices of T and by applying
dynamic programming on the middle sets, starting from the leaves
and moving towards the root.

13
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• Each middle set mid(e) of (T, µ) represents the subgraph Ge of G
formed by the edges of G which correspond to the leaves of T below
e.

• In each step of the dynamic programming, all optimal solutions for
a subproblem in Ge are computed, subject to all possibilities of how
mid(e) contributes to an overall solution for G. E.g., for Vertex

Cover, there are up to 2w(T,µ) subsets of mid(e) that may constitute
a vertex cover of G.

• The partial solutions of a middle set are computed using those of the
already processed middle sets of the children and stored by making
use of an appropriate data structure.

• An optimal solution to the problem is computed at the root of T .

Encoding the middle sets in a refined way may speed up the processing
time significantly. There are some methods to accelerate the update of the
solutions of two middle sets to a parent middle set:

Using the right data structure: storing the solutions in a sorted list reduces
the time consuming search for compatible solutions and allows a fast com-
puting of the new solution. E.g., for k-Vertex Cover, the time to process
two middle sets is reduced from O(23·w(T,µ)) (for each subset of the par-
ent middle set, all pairs of solutions of the two children are computed) to
O(21.5·w(T,µ)). In Dorn [27] matrices are used as a data structure for dy-
namic programming that allows an updating even in time O(2

ω
2
w(T,µ)) for

k-Vertex Cover (where ω is the fast matrix multiplication constant, ac-
tually ω < 2.376). Even though the currently best constant ω < 2.376 of
fast matrix multiplication is of rather theoretical interest, there exist some
practical sub-cubic runtime algorithms that help improving the runtime for
solving all mentioned problems.

A compact encoding : assign as few as possible vertex states to the vertices
and reduce the number of processed solutions. Alber et al. [1], using the so-
called “monotonicity technique”, showed that 3 vertex states are sufficient
in order to encode a solution of k-Dominating Set. A similar approach
was used by Fomin and Thilikos [37] to obtain, for the same problem, an
O(31.5·w(T,µ))-step updating process, that has been improved by Dorn [27]
to O(22·w(T,µ)).

Subset convolution: Björklund et al. [7] introduced a fast algorithm for the
subset convolution problem: given functions f and g defined on the lattice
of subsets of an n-element set N , compute their subset convolution f ⋆ g,
defined for all S ⊆ N by (f ⋆ g)(S) =

∑

T⊆S f(T )g(S \ T ), where addition
and multiplication is carried out in an arbitrary ring. Rossmanith, in [16],
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observed how this technique can be used to speed up dynamic programming
on graphs of bounded treewidth.

Exploiting graph structures: as we will see in Section 5, one can improve the
runtime further for dynamic programming on branch decompositions whose
middle sets inherit some structure of the graph. By exploiting the planarity
of the input graph, the update process for Planar k-Dominating Set can
be done in time O(3

ω
2
w(T,µ)) [27].

The above techniques can be used to prove the following result.

Theorem 9 ([27]). Planar k-Vertex Cover can be solved in O(23.56
√

k)·
nO(1) runtime and Planar k-Dominating Set in O(211.98

√
k) · nO(1) run-

time.

Kernels. Many of the parameterized algorithms discussed in this section

can be further accelerated to time O(nθ)+2O(
√

k) for θ being a small integer
(usually ranging from 1 to 3). This can be done using the technique of ker-
nelization that is a prolynomial step preprocessing of the initial input of the
problem towards creating an equivalent one, whose size depends exclusively
on the parameter. Examples of such problems are Planar k-Dominating

Set [4, 14, 36], k-Feedback Vertex Set [10], k-Vertex Cover and oth-
ers [33]. As kernel constructions are out of the scope of this survey, we
address the reader to the books [31, 35, 47] for further references.

5 Property (B) and Catalan structures

All results of the previous sections provide subexponential parameterized al-
gorithms when property (B) holds. However, there are many bidimensional
parameters for which there is no known algorithm providing property (B)
in general. The typical running times of dynamic programming algorithms
for these problems are O(bw(G)!) · nO(1), O(bw(G)bw(G)) · nO(1), or even
O(2bw(G)2) ·nO(1). Examples of such problems are parameterized versions of
k-Longest Path, k-Feedback Vertex Set, k-Connected Dominat-

ing Set, and k-Graph TSP (a version of metric TSP with metric being
the shortest path metric of some graph). Usually, these problems are in NP

whose certificate verification involves some connectivity question. In this
section, we show that for such problems one can prove that (B) actually
holds for the graph class that we are interested in. To do this, one has to
make further use of the structure of the input graphs (again using ideas from
Graph Minors Theory) that can vary from planar graphs to H-minor-free
graphs. In other words, we use the structure of the graph class not only for
proving (A) but also for proving (B).

Planar graphs. The following type of decomposition for planar graphs
follows from the results of Seymour and Thomas (Theorem (5.1) in [56]) and
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is extremely useful for making dynamic programming on graphs of bounded
branchwidth faster (see [27, 30]).

Let G be a planar graph embedded in a sphere S. Every noose O in S.
bounds two open discs ∆1, ∆2 in S, i.e., ∆1 ∩∆2 = ∅ and ∆1 ∪∆2 ∪O = S.

Figure 9: A sphere cut decomposition and the noose corresponding to edge
e.

We define a sphere cut decomposition or sc-decomposition (T, µ, π) as a
branch decomposition with the following property: for every edge e of T ,
there exists a noose Oe meeting every face at most once and bounding the
two open discs ∆1 and ∆2 such that Gi ⊆ ∆i∪Oe, 1 ≤ i ≤ 2. Figure 9 shows
an example of a sphere cut decomposition. Thus Oe meets G only in mid(e)
and its length is |mid(e)|. A clockwise traversal of Oe in the embedding of G
defines the cyclic ordering π of mid(e). We always assume that the vertices
of every middle set mid(e) = V (G1) ∩ V (G2) are enumerated according to
π. The following theorem follows from the results of Seymour and Thomas
[56] (see also Dorn et al. [30]).

Theorem 10. Let G be a planar graph of branchwidth at most ℓ with-
out vertices of degree one embedded on a sphere. Then there exists an sc-
decomposition of G of width at most ℓ that can be constructed in time O(n3).

Theorem 10 indicates that it is possible to consider an optimal branch
decomposition of a plane graph where each middle set is situated cyclically
on the plane where G is embedded.

In what follows, we sketch the main idea of a 2O(w(T,µ,π))nO(1) algorithm
for the k-Planar Longest Path. One may use k-Longest path as an
example for other problems of the same nature.

The algorithm follows the dynamic programming scheme described in
Section 4. A state of the dynamic programming algorithm associated to an
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edge e of the tree T of the sc-decomposition (T, µ, π), is a set of non-crossing
pairs of vertices in mid(e) that, in turn, correspond to non-crossisng pairs
of paths in the embedded graph Ge induced by the edges “not below” edge
e in (T, µ, π). As the vertices of mid(e) are cyclically arranged on a noose of
the plane, the number of non-crossing partitions is bounded by the Catalan
number of mid(e), that is singly exponentially on the branchwidth of G.
Based on this idea, it is possible to reduce drastically the number of states
in dynamic programming.

Formally, to count the number of states at each step of the dynamic
programming, we should estimate the number of collections of internally
vertex disjoint paths using edges from E ⊆ E(G) and having their (dif-
ferent) endpoints in S ⊆ V (G). We use the notation P to denote such a
path collection and we define pathsG(E,S) as the set of all such path col-
lections. Define an equivalence relation ∼ on pathsG(E,S): for P1,P2 ∈
pathsG(E,S), P1 ∼ P2 if there is a bijection between P1 and P2 such
that bijected paths in P1 and P2 have the same endpoints. Denote by
q-pathsG(E,S) = |pathsG(E,S)/ ∼ | the cardinality of the quotient set of
pathsG(E,S) by ∼.

Recall that we define q-pathsG(E,S) because, while applying dynamic
programming on some middle set mid(e) of the branch decomposition (T, µ),
the number of states for e ∈ E(T ) is bounded by O(q-pathsGi

(E(Gi),mid(e))).
Given a graph G and a branch decomposition (T, µ) of G, we say that

(T, µ) has Catalan structure if for every edge e ∈ E(T ) and any i ∈ {1, 2},

q-pathsGi
(E(Gi),mid(e)) = 2O(w(T,µ)) (1)

Now, (B) holds for planar graphs because of the following combinatorial
result.

Theorem 11 ([30]). Every planar graph has an optimal branch decomposi-
tion with the Catalan structure that can be constructed in polynomial time.

The proof of Theorem 11 uses a sc-decomposition (T, µ, π) (constructed
by using the polynomial algorithm of Seymour and Thomas [56]). Let Oe

be a noose meeting some middle set mid(e) of (T, µ, π). Let us count in
how many ways this noose can cut paths of G. Observe that each path is
cut into at most w(T, µ, π) parts. Each such part is itself a path whose
endpoints are pairs of vertices in Oe. Notice also that, because of planarity,
no two such pairs can cross. Therefore, counting the ways Oe can intersect
paths of G is equivalent to counting non-crossing pairs of vertices in a cycle
(the noose) of length w(T, µ, π) which, in turn, is bounded by the Catalan
number of w(T, µ, π) that is 2O(w(T,µ,π)).

We just concluded that the application of dynamic programming on
an sc-decomposition (T, µ, π) is the 2O(w(T,µ,π))nO(1) algorithm for proving
property (B) for planar graphs. By further improving the way the members
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of q-pathsGi
(E(Gi),mid(e)) are encoded during this procedure, one can

bound the hidden constants in the “O” notation on the exponent of this
algorithm (see Dorn et al. [30]). For example, for Planar k-Longest

Path β ≤ 2.63. With analogous structures and arguments it follows that
for Planar k-Graph TSP β ≤ 3.84, for Planar k-Connected Dom-

inating Set β ≤ 3.82, for Planar k-Feedback Vertex Set β ≤ 3.56
(see Dorn [27]).

In Dorn et al. [28], all above results were generalized for graphs with
bounded genus (now constants for each problem depend also on the genus).
This generalization requires a suitable “bounded genus” extension of Theo-
rem 11 and its analogues for other problems.

Excluding a minor. The final step is to prove property (B) for H-minor-
free graphs. For the proof of this, we need the following analogue of Theo-
rem 11.

Theorem 12 ([29]). Let G be a graph class excluding some fixed graph H
as a minor. Then every graph G ∈ G with bw(G) ≤ ℓ has an branch
decomposition of width O(ℓ) with the Catalan structure (here the hidden
constants in the “O” notations in O(ℓ) and the upper bound certifying the
Catalan structure in Equation (1) depend only on H). Moreover, such a
decomposition can be constructed in f(|H|)·nO(1) steps, where f is a function
depending only on H.

The proof of Theorem 12 is based on an algorithm constructing the
claimed branch decomposition using the structural characterization of H-
minor-free graphs of Robertson and Seymour [54]. Briefly, any H-minor-free
graph can be seen as the result of gluing together (identifying constant size
cliques and, possibly, removing some of their edges) graphs that, after the
removal of some constant number of vertices (called apices) can be “almost”
embedded in a surface of constant genus. Here, by “almost” we mean that
we permit a constant number of non-embedded parts (called vortices) that
are “attached” around empty disks of the embedded part and have a path-
like structure of constant width. The algorithm of Theorem 12, as well as
the proof of its correctness, has several phases, each dealing with some level
of this characterisation, where an analogue of sc-decomposition for planar
graphs is used. The core of the proof is based on the fact that the structure of
the embeddible parts of this characterisation (along with vortices) is “close
enough” to be planar, so to roughly maintain the Catalan structure property.

Theorem 12 implies (B) for k-Longest Path on H-minor-free graphs.
Similar results can be obtained for all problems examined in this section on
H-minor-free graphs. Since property (A) holds for minor/apex-contraction
bidimensional parameters on H-minor-free/apex-minor-free graphs, we have

that one can design parameterized algorithms with running time 2O(
√

k) ·
nO(1) for all problems examined in this section for H-minor-free/ apex-
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minor-free graphs (here the hidden constant in the “O” notation in the
exponent depends on the size on the excluded minor).

6 Conclusion

In Section 3, we have seen that bidimensionality can serve as a general
combinatorial criterion implying property (A). Moreover, no such a charac-
terization is known, so far, for proving property (B). In Section 5, we have
presented several problems where an analogue of Theorem 12 can be proven,
indicating the existence of Catalan structures in H-minor-free graphs. It
would be challenging to find a classification criterion (logical or combinato-
rial) for the problems that are amenable to this approach. Another inter-
esting direction of (related) research would be a development of complexity
theory for obtaining lower bounds on the running time of dynamic pro-
gramming algorithms on graphs of bounded treewidth. For example, for
general graphs of treewidth ℓ, how fast can we find a longest path? Is it
O(2o(ℓ log ℓ) · nc) (where c is some universal constant), or O(2O(ℓ log ℓ) · nc) is
the best we can hope for (up to some assumption in Complexity Theory)?
Or, is it possible to prove that the Maximum Independent Set problem
in a graph on n vertices and of treewidth ℓ cannot be solved, say, in time
O(1.1ℓ · nc)?
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